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Abstract—In this article, we consider modeling and prediction
of power loads due to fast charging stations for plug-in electric
vehicles. The first part of the project is to simulate work of a fast
charger activity by exploiting empirical data that characterize EV
user behavior. The second part describes the time series obtained
by this simulator and its properties. We show that the power load
aggregated over a number of fast chargers (after deseasonalizing
and elimination of the linear trend) is a self-similar process
with the Hurst parameter 0.57 < H < 0.67, where H varies
depending on the multiplexing level. The main contribution of the
paper is empirical evidence that a fitted fractional autoregressive
integrated moving average (fARIMA) model taking into account
self-similarity of the load time series can yield high quality
short-term forecasts when H is large enough. Namely, the
fitted fARIMA model uniformly outperforms regular ARIMA
algorithms in terms of root-mean-square error for predictions
with time horizon up to 120 minutes for H ≥ 0.639. Moreover,
we show that the fARIMA advantage on average grows as a
function of the Hurst exponent H . Computational experiments
demonstrate that this edge is stably greater than 1.1% and can
be as high as 5− 7% for some scenarios.

Index Terms—Demand forecasting, load modeling, self-
similarity.

I. INTRODUCTION

W ITH the growing concern over green house effect and
climate changes, transportation systems are changing

rapidly with the increasing adoption of electric vehicles (EV)
and plug-in hybrid electric vehicles (PHEV). The global
emissions reduction objectives (e.g. 20% CO2 reduction by
2020 in USA, Europe and Japan [1]) strongly suggest higher
penetration level of EVs, renewable energy sources and de-
mand response applications in the future. On the other hand,
there are some barriers associated with the large-scale adoption
of EVs, including long charging duration, range anxiety and
cost of EVs. Introduction of fast charger stations (CHAdeMO
50 kW, SAE 60 kW, Tesla 120 kW) in comparison with
standard chargers (Level 1 - 2-3.3 kW, Level 2 - 4-7.2 kW)
shorten charging durations to tens of minutes. However, this
produces an even bigger challenge for electric utilities. The
main reason is that such a high level of fast charger energy
consumption makes the aggregate load more irregular and
difficult to predict. In order to adequately respond to the
emerging challenges in systems planning and operations, it is
necessary to know how to simulate and forecast load demand
due to a large number of EV fast chargers. We address these
two issues in this work.

There are several studies that discuss different statistical
approaches applied to modeling EV driving schedules and
impact on a distribution system due to EV charging [2]- [6]. In

[2] charging load is simulated in various scenarios taking into
consideration location of charging (domestic/public) and abil-
ity to control the time of charge (uncontrolled/off-peak/smart).
The probabilistic distributions of initial state of charge, daily
distance driven, etc are derived in [2] from UK National
Statistics that includes information about all types vehicles
rather than EVs only. Lee et al. introduce in [3] a combination
of Bayesian temporal distribution models and Markov-chain
technique to synthesize individual driving cycles. The model-
ing of PHEV load using National Travel Survey (Finland) and
considering different cases with respect to a season of the year
and a day of the week is presented in [4]. Reference [5] models
a power load as a linear combination of the convenience
driven mode and the cost driven mode. The first approach
assumes the charging load follows the same shape as the travel
pattern curve while the second one presumes that the load
follows a “valley-filling” pattern. Another prominent study
concentrated on simultaions of usage pattern of a fast charging
station (rather than standard charger) is published by National
Renewable Energy Laboratory (NREL) [6]. The grid impact
and opportunity for integration of renewables is also discussed
in [6].

Despite the fact that the majority of modeling techniques
introduced in [2]- [6] already incorporate real-world travel
data, the reliability and relevance of surveys collected over
all types of vehicles and standard charging stations can be an
issue for generation of EVs load demand due to fast chargers.
In our study, we exploit more applicable and recent data from
Idaho National Laboratory (INL, Q3 2013) [7] specializing on
EV fast chargers only. Moreover, in the forecasting part of the
paper we propose a novel approach based on self-similarity of
deseasonalized load.

This paper is organized as follows. Section 2 describes
EV driving schedule data as well as temporal fast charging
distributions obtained from NREL, Alternative Fuel Data
Center and INL. The primary result of this section is an
algorithm that models the work of a fast charger given an
EV population that this charger serves. The output of the
algorithm is a time series which is equal to the immediate
aggregate load due to EV fast charging after multiplexing
over a large number of stations. The third section includes the
description of load characteristics and the empirical proof that
the obtained stochastic process after some invertible transfor-
mations (deseasonalizing and elimination of the linear trend)
is self-similar. Moreover, several different Hurst parameter
calculation methods are discussed and corresponding estimates
of H are obtained. The self-similarity of the time series makes
fractional autoregressive integrated moving average (fARIMA)
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model with non-integer differencing parameter a reasonable
candidate for forecasting the future values of the load demand.
Forecasting algorithms that we use are discussed in section
4. In the last section, we provide simulation results and
compare the performance of standard ARIMA models with
fitted fARIMA models.

The main contribution of the paper is a proof of self-
similarity of the deseasonalized aggregate EV fast charging
load which justifies implementation of a fARIMA forecasting
algorithm. This augmented fractional autoregressive integrated
moving average model outperforms the best fitted ARIMA
model for relatively short-term forecasts with time horizons
up to 120 minutes when H is large enough.

II. MODELING EV CHARGING BEHAVIORS

In this section, we develop an algorithm that simulates the
usage pattern of a single fast charger station by a set of EVs,
based on the real-world data given in [6]- [11]. Our algorithm
can be considered as an extension of a model introduced by
Simpson and Markel [6] since their model exploits universal
information and assumptions about EV charging behavior. The
generic assumptions we inherit from Simpson and Markel [6],
as well as additional key augmentations are discussed in the
next subsection.

A. Assumptions

1) The number of charging stations is M , each with one
charging port (by default, M = 50). This parameter
represents an aggregation level of load demand explicitly
defined below in equation 1.

2) The fleet size, that is local population of EVs that can
charge at a station, is denoted by N . According to [10],
there are 286,000 EVs sold in the US since 2010 and
2,346 fast charging outlets [11], what yields a national
average fleet size N̄ = 122. In our study, we set a default
value N = 100.

3) EV owners will charge most frequently at home. This
conjecture is supported by the Electric Power Research
Institute charging pyramid [8]. There are only two
reasons why an EV owner will not plug a vehicle in at
home on any given day. Either the operator forgets to do
it with some probability (so-called forgetfulness factor,
denoted as γ) or a trip that started the day before is not
finished by 12 am. The latter scenario implies that the
driver is absent at home during the night. In our study,
the forgetfulness factor γ is set to 10% by default.

4) EV energy consumption is 300 Wh/mi while on the
move.

5) EVs start fast charging when their state of charge (SoC)
is within 10 − 40% and terminate charging when SoC
reaches 70− 100%. Initial SoC is uniformly distributed
between 10− 90%.

6) Efficiency of fast chargers is 85% due to anticipated
losses from internal battery resistance and AC-to-DC
power conversion.

7) Fast charger power level is 50 kW with 25% safety factor
(total 62.5 kW required).

Table I
TYPES OF THE EVS AND THEIR PARAMETERS

EV type Capacity C, kWh Market share P(EV),%

Chevrolet Volt 16.5 44.28

Nissan LEAF 24 35.71

Tesla Model S 65 20.01

In addition to the assumptions from [6] listed above, we
introduce new extensions to the model that we build as
follows:

8) There are n different types of EVs denoted as
EV1, . . . , EVn. The battery capacity and the percentage
of EV type r in the population is denoted Cr and
P (EVr), respectively. To be more precise, according
to the Alternative Fuels Data Center [9] and available
EV and PHEV sales statistics in the US in 2010-
14 there are three predominant models that constitute
the majority of the plug-in EV market: Chevrolet Volt
(30.5%), Nissan LEAF (24.8%) and Tesla S (13.2%).
After elimination of hybrid EVs and models with a small
population we consider a scenario with only 3 EV types.
Their characteristics (capacity and market share after
normalization) are represented in the Table I.

9) In order to generate the charging load, we consider a
horizon of D (by default D = 25) consecutive and
identical days. More precisely, following [6] we assume
that all days are indistinguishable from the perspective
of the distributions listed below:
a) EV departure time when EV trip starts with empirical
probability density function fdt(t), t ∈ [0; 24] hours;
b) EV average speed with probability density fs(x), x ∈
[0; 90] miles/hour;
c) EV trip length with probability density fl(x), x ∈
[0; 50] miles.
These distributions are explicitly represented in [6] and
based on the information about 149,000 individual trips
gathered by Puget Sound Regional Council in 2008 in
Seattle metropolitan area.

10) Another empirical data that we want to incorporate into
the load modeling is fast charging demand versus the
time of day and duration of fast charging. Empirical den-
sity functions far(t), t ∈ [0; 24] hours, for arrival time
to the fast charger and fct(t), t ∈ [0; 60] minutes, for
charging duration are obtained from “The EV Project”
by INL [7].

11) The probability δ that an EV will commute during any
given day is 5/7. This assumption represents a scenario
when an operator uses her EV on average 5 days per
week.

Having introduced assumptions A1-A11, now it is possible
to simulate the activity of each of the M fast chargers during
D consecutive days. This work is described by a continuous
stochastic process W i(t) representing an immediate load de-
mand at the fast charger i:

W i(t) = 62.5 · I( The station i is ON at time t ),
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Figure 1. Aggregate immediate load WM (t) for a horizon D = 7 days.

where coefficient 62.5 = 50×1.25 represents 50kW load with
25% safety factor and I is an indicator function. In this case the
immediate total load demand aggregated over M fast chargers
is defined as follows:

WM (t) =

M∑
i=1

W i(t). (1)

We discretize WM (t) at a sampling frequency of 50 observa-
tions per hour. In the later sections we continue to use notation
t as a sample index for discrete signals rather than a continuous
time parameter.

B. Generation of the aggregate charging schedule WM (t)

In this subsection, we describe the algorithm for modeling
the time series WM (t) that represents the power load aggre-
gated over M fast chargers.

1) Repeat steps 2-18 for each of d = 1 . . . D days.
2) Repeat steps 3-12 for each of EV j = 1 . . . N in the

fleet.
3) For fixed j, define a type k ∈ {1 . . . n} of j-th EV by

finding k s.t.

1 +

k−1∑
r=1

[P (EVr) ·N ] ≤ j ≤
k∑
r=1

[P (EVr) ·N ],

where n = 3 for our study and market shares P (EVr)
are described in assumption A8.

4) If d = 1, then generate an initial SoCj ∈ U[0.1; 0.9]
according to A5.

5) Generate δ ∈ B(5/7) as defined in A11. If δ = 0, then j-
th EV does not commute on that day and algorithm goes
to step 17 with binary fast charging indicator FCj = 0;
otherwise, it goes to step 6.

6) Generate departure time dtj , average speed sj and length
of the trip lj according to corresponding distributions
from A9.

7) Check if the fast charging is necessary by examining
inequality

0.3 · lj ≥ (SoCj − 0.1)Ck(j),

where 0.3 · lj is equal to amount of energy required for
a trip of length lj (A4), and RHS equals current battery
charge reduced by 10% (A5). If this inequality holds,

then set binary fast charging indicator FCj = 1 and go
to step 8; otherwise, set FCj = 0, update

SoCj = SoCj −
0.3 lj
Ck(j)

according to A4 and go to step 17.
8) Calculate tj(0.4) and tj(0.1) when SoC of j-th EV will

be 40% and 10% (A5), respectively, using average speed
sj and energy consumption rate 0.3 kWh/mi (A4):

tj(ξ) = dtj +
(SoCj − ξ)Ck(j)

0.3 sj
,

where ξ ∈ {0.1; 0.4}.
9) Generate a moment of arrival arj to a fast charging

station of j-th EV inside time interval [tj(0.4); tj(0.1)]
according to normalized distribution

f̄ar(t) =
far(t)

tj(0.1)∫
tj(0.4)

far(u) du

, t ∈ [tj(0.4); tj(0.1)],

derived from density far(t) that described in A10.
Update

SoCj = SoCj −
0.3sj(arj − dtj)

Ck(j)
.

10) Calculate tj(0.7) and tj(1) when SoC of j-th EV will
reach 70% and 100% level (A5), respectively, given 85%
efficiency of charger (A6) and its power level 50 kW
(A7):

tj(η) = arj +
(η − SoCj)Ck(j)

0.85 · 50
,

where η ∈ {0.7; 1}.
11) Generate charging time ctj inside time interval

[tj(0.7) − arj ; tj(1) − arj ] according to normalized
distribution f̄ct(t), t ∈ [tj(0.7) − arj ; tj(1) − arj ]
derived from fct(t) that described in A10 similarly to
step 9.

12) Update SoC after charging and finishing the trip of
length lj according to formula

SoCj = SoCj+
ctj · 0.85 · 50

Ck(j)
−0.3(lj − sj(arj − dtj))

Ck(j)

13) At this point, we obtain V =
N∑
j=1

FCj intervals of

the form [arj , arj + ctj ] for some j ∈ {1 . . . N}
that correspond to charging events. If some intervals
intersect, for instance the first k intervals:

[ar1, ar1 + ct1], . . . , [ark, ark + ctk]

s.t. ar1 < ar2 < · · · < ark,

then we organize a queue of k users with ct1, . . . , ctk
service times according to first come first served rule.
It is also necessary to assume 1.2 minute interval (1/50
h) between users in a queue because the next EV driver
cannot immediately start charging when the current one
stops doing it. In other words, we shift intersecting
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intervals ordering them one by one, saving their length
and making them disjoint.

14) Based on rearrangements defined in step 13, construct
indicator function W (t), which is equal to 62.5 if at
time t the fast charging station is on (A7).

15) Repeat steps 16-18 for each of EV j = 1 . . . N in the
fleet.

16) Given rearrangements from step 13, calculate the waiting
time of j-th EV in a queue wtj for fast charging.

17) Calculate the time of arrival of j-th EV to home:

hj = dtj + δ · lj
sj

+ FCj · (ctj + wtj).

18) If time hj is after midnight, then EV is not charged at
home according to A3. Otherwise, generate γ ∈ B(0.9).
If γ = 1, then SoC of j-th EV is updated as follows

SoCj = max(SoCj , 0.8),

what represents a home charging up to 80%. If γ = 0,
then EV user forgets to charge her vehicle at home and
SoCj remains unchanged (A3).

19) Repeat steps 1-18 of the generating algorithm for each
of the M = 50 stations. Obtain the set of time series
W i(t), i = 1 . . .M for t = 1, . . . , 1200D, since
D days · 24 hours · 50 observations

hour = 1200D observations.
20) Aggregate immediate loads W i(t) with respect to i =

1 . . .M to obtain the total load WM (t) according to (1).
A part of the resulting time series WM (t) for M = 50

stations and a horizon of D = 7 days (out of total 25) is
represented in Fig. 1.

III. LOAD CHARACTERISTICS

One of the main objectives for electric utilities is to build
an accurate forecasting algorithm for future values of the time
series WM (t) obtained in section 2. In order to make this
predictor more accurate, we discuss in this section several
invertible transformations and useful properties of the load
WM (t) that facilitate reduction of the forecast error.

A. Seasonal Decomposition

First of all, the equivalence of D days from the perspective
of probabilistic distributions describing EV users behavior
(departure time, average speed and distance, arrival times to
the fast charger) implies the presence of strong periodicity. In
other words, one may expect that the number of charging EVs
at any given time doesn’t differ statistically across subsequent
days. This conjecture can be also supported by observation of
Fig. 1 with 7 distinct cycles of similar length each of which
corresponds to one day.

A simple way to examine serial dependencies is to plot
autocorrelation function of the aggregate load WM (t) [12].
The presence of local maxima at lags which are multiples
of 1200 (what corresponds to 1200/50=24 hours) implies
periodicity of the initial time series with the period of one
day.
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Figure 2. Autocorrelation function of load WM (t).

Therefore, it is necessary to decompose the aggregate load
WM (t) for t = 1 . . . 1200D into three separate components:

WM (t) = LT (t) + S(t) + Y (t), (2)

where LT (t) represents a linear trend, S(t) a seasonal com-
ponent and Y (t) the remaining stochastic variability.

Linear trend LT (t) = a · t + b for t = 1 . . . 1200D is
uniquely defined by two unknown parameters a and b which
can be easily obtained via linear regression.

After estimating and removing the linear trend LT (t), the
seasonal component S(t) for t = 1 . . . 1200D that consists
of D identical cycles of length 1200 observations has to be
computed. There are many different ways to estimate the
seasonal component. It is important to choose the one that
gives the best fit to the time series being considered. In our
study, we consider 4 algorithms for extraction of S(t). They
are thoroughly defined in [12]:

1) Average day technique. Calculation of the arithmetic
mean of time series values over D days for all t =
1 . . . 1200. The resulting seasonal component is denoted
as Sm.

2) Median day technique. Calculation of median (0.5 quan-
tile) of time series values over D days for all t =
1 . . . 1200 (Smed).

3) Moving average technique. The first step of the method
is estimation of the trend by application of the moving
average filter in order to eliminate the seasonality and
dampen the noise. In our case the length of this filter is
1200 observations. The second step is calculation of the
average deviations from the trend. Finally, the coeffi-
cients si, for i = 1 . . . 1200 of the extracted seasonal
component (Sma) are normalized average deviations
from the trend.

4) Spectral decomposition. Fitting a sinusoid shifted in time
and space with a period 1200 to the initial time series
(Ssin).

It is worth mentioning that the first (Sm) and the third
(Sma) methods applied to the aggregate load WM (t) yield very
similar seasonality components (Fig. 3). On the other hand,
in our model which will be thoroughly described in section
5, the total difference between the corresponding seasonal
components can be as high as

‖Sm − Sma‖1 = 2066.8 kW.
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Figure 3. Seasonal components extracted from WM (t) by different methods.

This difference may dramatically impact the prediction error.
Therefore, we consider all four methods of the seasonal
component computation in order to find the best fit.

The final step of the seasonal decomposition is to extract the
deseasonalized residual load Y (t) according to the following
formula:

Y (t) = WM (t)− LT (t)− S(t).

We define the residual deseasonalized loads corresponding
to the 4 methods described above as Ym, Ymed, Yma and
Ysin. Finally, it is necessary to test the stationarity of these
stochastic processes Yi(t), i ∈ {m,med,ma, sin} by Aug-
mented Dickey-Fuller (ADF) test [13], Kwiatkowski, Phillips,
Schmidt, and Shin (KPSS) test [14], etc.

B. Self-Similarity of the Deseasonalized Load

A key property of the deseasonalized load that improves the
accuracy of forecasting algorithm is self-similarity [15]. The
aggregate load WM (t) exhibits many bursts at different time
scales when multiplexed over M stations (Fig. 4) .

It is important to note that similar behavior with extended
periods above/below the mean can be observed for the de-
seasonalized load Y (t) (Fig. 5). This behavior of the time
series is known as “Joseph effect” [16] which is one of the
distinctive features of the self-similar processes. The degree
of self-similarity of a time series can be measured by the
Hurst exponent 0 < H < 1 [17]. Let {Y (t), t = 1, 2, . . . }
be a wide-sense stationary time series with both mean and
autocorrelation functions time invariant. For each m ∈ N,
denote the m-aggregated time series Y (m)(t), t = 1, 2, . . .
according to the rule:

Y (m)(t) =
1

m

(
Y (tm−m+ 1) + · · ·+ Y (tm)

)
, t ≥ 1.

Then the time series Y (t) is called H-self-similar if for
all m ∈ N, the aggregate time series Y (m) has the same
distribution as Y rescaled by a constant mH . In other words,

Y (t)
d
=m−H

tm∑
i=tm−m+1

Y (i) for all m ∈ N.

The Hurst parameter H expresses the speed of decay of the
time series autocorrelation function ACF(Y ).
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Figure 4. Fragment of load WM (t) at different multiplex levels. Red color
indicates the same segment of load.
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Figure 5. Deseasonalized load Ym(t). Red line corresponds to the mean
value.

It is known that every self-similar time series with the Hurst
exponent 1

2 < H < 1 has an additional property of long-
range dependence [18]. Such a time series has autocorrelation
coefficients r(k) ∼ k−β as k →∞, where H = 1− β/2.

There are several statistical methods for testing self-
similarity and estimation of the Hurst parameter H for a given
time series [17]. In this study, we exploit the variance-time plot
relying on the slowly decaying variance of a self-similar series,
R/S analysis using the rescaled range statistic and periodogram
method estimating the slope of the power spectrum of the
series as frequency approaches zero.

The computational results of these methods confirming
the self-similarity of the deseasonalized load Y (t) with the
Hurst parameter H in the interval [0.57; 0.67] are presented in
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section 5.

IV. FORECASTING ALGORITHMS

In a highly competitive energy market load forecasting is
an essential problem to electric utilities for many reasons [12].
The electricity price variability leads to the significant risks
for energy suppliers that have to manage contracts of different
types and durations. Short-term forecasts are very important
to ensure reliability of electricity supply to consumers, while
long-term load demand predictors are used as the basis for
future development of the utilities. Thus, load forecasting has
become the central process in the planning and operation of
energy suppliers with huge monetary penalties for prediction
errors. This is why increasing forecast quality even for small
percentage may lead to significant economic value for utilities.

The seasonal decomposition (2) described in subsection
3(A) implies that the load WM (t) consists of two deterministic
terms (linear trend LT (t) and a seasonal component S(t))
that can be evaluated based on the historical data. Hence,
both processes LT (t) and S(t) can be used for prediction
of the future values of the total load WM (t). Therefore,
the only stochasticity that requires accurate characterization
is contained in the process Y (t). Below we discuss three
different methods for forecasting the deseasonalized load Y (t).

1) Baseline method.
The simplest predictor for the process Y (t) is the mean
value EY estimated based on the observations from the
training set. In this case, the predictor for the aggregate
load WM (t) is just the historical average of demand for
the same time of the day.

2) Autoregressive integrated moving average model
ARIMA(p,d,q).
Non-negative integer parameters p, d and q correspond
to the order of autoregressive (AR), integrated (I) and
moving average (MA) parts of the method, respectively
[19]. The principal idea of the model is to build a
forecast for the future values of the time series Y (t) as a
linear function of previous values Y (t−1), Y (t−2), . . .
and the error terms ε(t), ε(t−1), . . . which are assumed
to be i.i.d. random variables with zero mean. In terms of
the lag operator BiY (t) = Y (t− i) the ARIMA model
can be represented by the following equation:(

1−
p∑
i=1

αiB
i
)

(1−B)dY (t)

=
(

1 +

q∑
j=1

βjB
j
)
ε(t), (3)

where αi, i = 1 . . . p and βj , j = 1 . . . q are parameters
of the AR and MA parts, respectively. Given a time
series {Y (t), t = 1, 2 . . . } the problem of fitting the
best ARIMA algorithm into it consists of two parts. The
first one is the model selection problem, that is choosing
the order parameters p, d, q, for instance, based on one
of the information criteria (IC): Bayesian (BIC), Akaike
(AIC), etc. The second part is the estimation of unknown
coefficients αi, i = 1 . . . p and βj , j = 1 . . . q of the

corresponding AR and MA parts using auxiliary maxi-
mum likelihood or least squares optimization problem.
Both these procedures can be executed automatically by
different software including R package ’forecast’ used
in this study [20].

3) Fractional autoregressive integrated moving average
model fARIMA(p,d,q).
This method is a generalization of the previous one
allowing integrated parameter d to take non-integer
values, which was designed in order to capture both
short-range and long-range dependence of the time-
series simultaneously [21]. The fractional differencing
operator in this case is defined as follows

(1−B)d =

∞∑
i=0

(
d

i

)
(−B)i,

where
(
d
i

)
= Γ(d + 1)/[Γ(k + 1)Γ(d − k + 1)] and Γ

denotes the Gamma function.
If parameter d in the definition (3) is equal to 0, then
fARIMA(p,d,q) model is the usual short-range depen-
dent ARMA(p,q) model. On the other hand, it is known
that fARIMA(p,d,q) process with d ∈ (0, 0.5) exhibits
persistence, where parameter d indicates the strength of
long-range dependence similar to the Hurst parameter of
self-similar processes [22]. In fact, the relation between
these two parameters is H = d+ 0.5.
Similar to the ARIMA case, it is possible to fit the
fARIMA(p,d,q) model to the time series Y (t) using the
function ’arfima’ from R package ’forecast’.

V. COMPUTATIONAL RESULTS

In this section, we implement all modeling algorithms and
compare the performance of the forecasting methods described
in the previous sections. First of all, following the procedures
illustrated in section 2, it is necessary to simulate the im-
mediate aggregate load WM (t) (part of which is represented
in Fig. 1) for D = 25 consecutive days, M = 50 fast
chargers with 1 charging slot and a local fleet consisting of
N = 100 EVs for each of the stations. After this, the total set
of 25 ·1200 = 30000 observations is split into a training set of
24000 successive observations that correspond to the horizon
of the first 20 days and a testing set of the remaining 6000
observations (5 days).

The next step is seasonal decomposition of the load demand
WM (t) into three sub-processes according to formula (2).
Coefficients of the linear trend LT (t) = a · t+ b are estimated
on the training set with MATLAB function ’polyfit’. The
coefficient values

a = −0.0000187, b = 21.678,

imply that the best linear predictor for the WM (t) is a constant
function (since the slope is negligibly small), which is equal
to the mean load demand 21.678 kW. Having computed 4
seasonal components Sm, Smed, Sma and Ssin as stated in
subsection 3(A), one can obtain the corresponding deseason-
alized loads Ym, Ymed, Yma and Ysin. For these 4 extracted
processes it is necessary to run ADF and KPSS stationarity
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Table II
RESULTS OF STATISTICAL STATIONARITY TESTS

Deseasonalized Load ADF value KPSS value

Ym -31.2647 2.4197

Ymed -36.8286 1.7646

Yma -31.2696 2.4110

Ysin -31.0270 2.2500

Critical Value -1.9416 0.1460

Table III
ESTIMATION OF THE HURST PARAMETERS

Load Time-variance plot RS analysis Periodogram Average

Ym 0.6389 0.6245 0.6298 0.6310
Ymed 0.6343 0.6304 0.6306 0.6317
Yma 0.6363 0.6284 0.6332 0.6326
Ysin 0.6153 0.6071 0.6093 0.6105

tests, for instance, taking advantage of MATLAB functions
’adftest’ and ’kpsstest’ from the Econometrics toolbox. The
output statistical values calculated on the training set are listed
in the Table II. Since for the ADF test all residuals Yi for
i ∈ {m,med,ma, sin} yield test statistics below a threshold
-1.9416, we accept the hypothesis that all four deseasonalized
loads Yi are stationary. Similarly, for the second test KPSS
statistic values above the critical value 0.1460 imply station-
arity of stochastic processes Yi for i ∈ {m,med,ma, sin}.

The self-similarity of the time series Y (t) is estimated on
the training set by three different methods indicated in sub-
section 3(B) (time-variance plot, R/S analysis, periodogram)
and the average values of estimated Hurst exponents are
listed in the last column of Table III. For all deseasonal-
ized loads that we consider the Hurst parameter H is in
the interval [0.57; 0.67], that is 1

2 < H < 1. This makes
the fARIMA(p,d,q) model with parameter d = H − 0.5 a
reasonable candidate for forecasting. The next part of the
computational experiment is a model selection for which only
observations from the training set are used. We fit the best
ARIMA(p,d,q) model to each of the variants of the time
series Y (t) using Bayesian Information Criterion implemented
in R package ’forecast’. After the optimal values of order
parameters p, d, q and model coefficients αi, i = 1 . . . p,
βj , j = 1 . . . q are obtained, it is necessary to test the
prediction quality of fitted ARIMA(p,d,q) models for time
series Y (t) on the testing set. Moreover, in our study we
examine different prediction horizons τ = 1 . . . 100. These
horizons are equivalent to time units from 1.2 min to 120
min since the time resolution is 50 observations per hour.
The quality measure of a forecasting algorithm A is the root-
mean-square error (RMSE) calculated on the testing set not
for stochastic component Y (t) but rather for the initial load
WM (t) (2). The RMSE as a function of prediction horizon
τ = 1 . . . 100 and algorithm A is defined as follows

RMSE(τ ;A) =

√√√√√n(τ)∑
i=1

τ∑
t=1

(WM (i+ t− 1)− ŴM (i+ t− 1))2

n(τ)
,
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Figure 6. RMSE of the fitted ARIMA models.

where WM (i) is an actual value of the time series, ŴM (i) =
LT (i)+S(i)+Ŷ (i) is a predicted value according to algorithm
A and n(τ) = 6001 − τ is a number of observations in the
testing set for a fixed τ .

Five plots on the Fig. 6 represent the forecasting quality
of the best fitted ARIMA models to deseasonalized loads
Ym, Ymed, Yma and Ysin and a baseline method versus pre-
diction horizon τ = 1 . . . 100. The method corresponding
to mean day technique Ym has the smallest RMSE over all
time horizons (depicted in red color). The best fitted ARIMA
model to the process Ym according to BIC has the following
parameters: order p = 3, d = 0, q = 5; noise variance
σ = 13.501.

The final step of the forecasting model selection problem
is to find the fitted fARIMA model to the most accurate
deseasonalized load Ym and test its quality in terms of RMSE.
The fitted fARIMA with respect to BIC is found by R package
’forecast’ and specified by order parameters p = 1, d =
0.1367, q = 1; coefficients AR(1) = 0.8692, MA(1) =
0.0511 and noise variance σ = 13.599.

The computational results illustrated on Fig. 7 imply that the
fitted fARIMA(1, 0.1367, 1) model outperforms the best fitted
ARIMA(3,0,5) model for all time horizons τ = 1, . . . , 100
what corresponds to the short-term load forecasts up to 2 hours
and the edge can be as high as( 17.68

16.756
− 1
)
· 100% = 5.61%

for τ = 14. It is worth mentioning that the differencing order
d = 0.1367 is in almost perfect accordance with estimation
of the Hurst exponent H = 0.6310 for the time series Ym,
since the theoretical link between these two parameters is H =
d+ 0.5.

The following computational experiments consider varia-
tions of three most important parameters of the problem: load
aggregation level M , initial local fleet size N and forgetfulness
factor γ. For each of the scenarios presented in Table IV, we
compute the corresponding Hurst exponent and inspect the
quality and advantage of the fitted fARIMA model over the
the fitted ARIMA algorithm. In order to this, we introduce a
function

Edge(τ) =
RMSE(τ ; ARIMA)

RMSE(τ ; fARIMA)
− 1 (4)
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Figure 7. RMSE of the fitted fARIMA and ARIMA models.

for prediction horizons τ = 1 . . . 100. Based on function (4),
the quality of the fitted fARIMA algorithm can be measured
in terms of the following characteristics:

Qfract =
1

100

100∑
t=1

I
{
Edge(t) > 0

}
, (5a)

Qmean =
1

100

100∑
t=1

Edge(t), (5b)

Qmax = max
t=1...100

Edge(t). (5c)

Quantity Qfract is equal to the fraction of time horizons
when fARIMA outperforms ARIMA, Qmean equals a mean
advantage of fARIMA over ARIMA, while Qmax exposes
the maximum edge of fARIMA algorithm over ARIMA. The
larger the values of characteristics (5), the higher the advantage
of using the fractional ARIMA model over the regular ARIMA
for load prediction.

In order to inspect the influence of major scenario pa-
rameters on the Hurst exponent, we run a linear regression
model using data from columns 2-5 of Table IV. The resulting
equation is

H = 0.589− 0.106γ + 0.00014M + 0.00017N.

The growth of number of stations M and local fleet size N
increase the density and the total number of fast charging
events. Therefore, the deseasonalized load becomes more self-
similar with a higher Hurst exponent. At the same time, the
growth of forgetfulness factor γ decreases the total number of
public charging events at public stations, making parameter H
lower.

Moreover, we compute correlation coefficients between H
and quality measures (5) based on columns 5-8 of Table IV:

r(H,Qfract) = 0.90; r(H,Qmean) = 0.62; r(H,Qmax) = 0.45

Since all three coefficients are positive, then the advantage
of using fARIMA algorithm expressed in terms of (5) grows
when the Hurst exponent of the deseasonalized load Y in-
creases. This positive trend can be seen on Fig. 8-9 for all
three quality indicators.

The conducted computational experiments illustrate the fol-
lowing patterns for simulated load time series:

Table IV
DESCRIPTION AND RESULTS OF EXPERIMENTS

Exp γ M N Hurst Qfract Qmean Qmax

1 0.05 50 100 0.629 66% 2.33% 5.76%
2 0.05 50 200 0.599 14% 1.03% 3.02%
3 0.05 50 300 0.652 100% 2.81% 6.81%
4 0.05 100 100 0.603 34% 1.61% 2.98%
5 0.05 100 200 0.642 100% 1.96% 5.69%
6 0.05 100 300 0.652 100% 2.13% 7.13%

7 0.1 50 100 0.631 100% 2.69% 5.61%
8 0.1 50 200 0.615 63% 2.31% 6.43%
9 0.1 50 300 0.626 92% 1.48% 2.49%
10 0.1 100 100 0.573 10% 1.85% 5.39%
11 0.1 100 200 0.639 100% 2.84% 5.53%
12 0.1 100 300 0.661 100% 2.25% 2.81%

13 0.2 50 100 0.596 7% 0.11% 1.18%
14 0.2 50 200 0.607 23% 1.32% 3.81%
15 0.2 50 300 0.614 72% 1.10% 3.49%
16 0.2 100 100 0.603 20% 0.92% 2.63%
17 0.2 100 200 0.625 88% 2.14% 5.13%
18 0.2 100 300 0.636 94% 1.58% 6.44%

The Hurst exponent
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Figure 8. Advantage of fARIMA model in terms of Qfract

• Deseasonalized loads Y are self-similar processes with
Hurst parameters H strictly greater than 0.5. Actually,
H ≥ 0.573 for considered scenarios.

• The fraction of horizons where the fitted fARIMA is
more accurate than fitted ARIMA almost monotonically
and rapidly grows as a function of H (Fig. 8). For the
Hurst parameters high enough (H ≥ 0.639) the indicator
Qfract is equal to 100%.

• Average fARIMA advantage Qmean is positive for all
studied scenarios. For H high enough (H ≥ 0.614) the
mean fARIMA edge Qmean is securely greater than 1%
what constitutes a significant forecasting edge (Fig. 9).

• Maximum advantage of fARIMA models Qmax varies
from 1.18% to notable 7.13% for different multiplexing
levels and time horizons τ (Fig. 9).

These observations allow us to conclude that self-similarity
of the deseasonalized load Y (t) plays an important role in load
prediction problem. The higher the Hurst exponent H is, the
bigger a range of short-term forecasting time horizons where
the fractional ARIMA model yields more accurate results
than fitted ARIMA models. Probably, the main reason is that
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Figure 9. Advantage of fARIMA model in terms of Qmean and Qmax

fARIMA models by definition take into consideration the self-
similarity of the process Y (t) and long-term dependencies
between its consecutive values.

Some possible extensions of this work include implemen-
tation of probabilistic EV load forecasts instead of point
predictions according to [23], incorporation of possibility to
perform vehicle-to-grid power delivery [24] and consideration
of probabilistic renewable and deterministic power grid energy
sources at the same time [6].

VI. CONCLUSION

This work addresses the problem of load modeling and
prediction due to EV fast charging. Each charging station
may generate electricity demand that can be as high as 120
kW, which makes the aggregate load more irregular and
difficult to be predicted. Therefore, forecasting of the load
demand becomes a challenging and important problem for the
electric utility because of its significant financial and safety
consequences.

The paper starts with a discussion of empirical data char-
acterizing EV owners driving and charging schedules. All
necessary assumptions are explicitly stated and used in order to
simulate activities of a fast charger. The output of the modeling
algorithm is a time series that represents aggregate load of
multiple fast charger stations.

The useful statistical properties of this load are discussed
in the second part of the paper. The most important one is the
self-similarity of the load demand after deseasonalizing and
elimination of the linear trend. The Hurst exponent H varies
from 0.573 to 0.661 depending on the level of aggregation
over a number of stations, a local fleet size and a forgetfulness
factor value.

The main contribution of the paper is the empirical demon-
stration that the deseasonalized load is self-similar and that
fARIMA model can produce more accurate short-term load
forecasts. More precisely, the computational experiments sup-
port a statement that the higher the level of self-similarity of
simulated load demand (described by the Hurst exponent H),
the bigger the advantage of using fARIMA models. Having
defined three quality characteristics of a forecasting algorithm,
we show that all of them increase on average as a function
of H . When H is high enough (H ≥ 0.639) fitted fARIMA
model outperforms all ARIMA algorithms in terms of RMSE

for all forecasting time horizons up to 120 minutes. This edge
is steadily greater than 1.1% and can be as high as 5 − 7%
for some scenarios what constitues a significant advantage for
electric utilities.
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